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respect to the symmetry) then a null symbol ( - )  can be 
written to correspond to directions in which no 
symmetry is present. However, since each axis is 
identically related to every other there is no loss of 
information, except that relating to orientation, if the 
null symbols are omitted. Thus class No. 3 (Fig. 1) is 
shown in the orientation - - -  m, but m is a sufficient 
symbol. 

Rotation planes have to be specified in a separate 
sequence. The order adopted for the axial plane is wx, 
xy, yz, zw, wy, zx, and a semi-colon is placed between 
the two series of symbols when both are present. 

Again, null symbols can be inserted as required to 
give an unambiguous notation, including orientation. 
A possible shortened notation that does not include 
orientation may be derived as follows: 

If there is only one rotation plane as in No. 6 all the 
null symbols may obviously be omitted. 

In four dimensions two planes may intersect in a line 
or only in a point, and in the latter case their 
representations in the hyperstereogram do not inter- 
sect at all. This means that the axial planes concerned 
do not contain a common axis, and there are three 
differently oriented possibilities for No. 7, where this is 
true, namely 2 -  2 - - - ,  - 2 -  2 - -  and . . . .  2 2. On the 
other hand, for No. 12 there are four differently 
oriented possibilities 2 2 - - -  2, - 2 2 -  2- ,  - -  2 2 -  2 and 
2 - - 2  2- .  If we make a convention that an orientation 
is chosen such that two planes are in the first four 
positions then No. 7 has two places occupied that are 
separated by a null symbol, whereas No. 12 always has 
two adjacent occupied places amongst these four 
(treated cyclicly). Thus we may symbolize No. 7 as 
2 - 2  and No. 12 as 2 2 (since two two-fold planes in the 
latter relationship necessarily imply the third). Thus in 

the sequence of symbols for rotation planes it is 
essential to retain a null symbol when the planes 
involved do not intersect in a line. 

Two sets of symbols for the first 16 classes are given 
in Table 1; 'extended symbols' are already in the 
shortened form discussed above. In the column headed 
'symbol' the contraction has been taken a stage further 
by omission of those symmetry elements that are 
necessarily implied by others. Their meaning will be 
greatly clarified by comparison with the hyperstereo- 
grams in Fig. 1. Additional complications in the 
nomenclature arise in some higher-symmetry systems, 
but these will be dealt with in a subsequent publication 
along with the corresponding explanatory hyperstereo- 
grams. 

Conclusion 

The hyperstereogram is a very powerful tool in 
clarifying the concepts of four-dimensional crystal- 
lography. 

Thanks are due to P. M. de Wolff for extremely 
helpful advice on improvements in the precision and 
clarity of presentation of the discussion. 
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Abstract 

In the general case where there is only one molecule in 
the asymmetric unit, and in the absence of non- 
crystallographic symmetry, molecular-replacement 
(MR) techniques can be used to solve an unknown 
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crystal structure from a closely related known 
molecular model. The procedure comprises two stages 
in order to find (i) the orientation of the model in the 
crystal, and (ii) the position of the well oriented model 
relative to the crystallographic symmetry elements. The 
most widely used rotation function R(8) [Rossmann & 
© 1983 International Union of Crystallography 
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Blow (1962). Acta Cryst. 15, 24-31], for stage (i), 
correlates the rotated central portion U of the Patterson 
function of the observed crystal with the calculated 
Patterson function of the proposed model. The calcu- 
lation of the Patterson function of the model is 
performed in an arbitrary cell of sufficient size to 
prevent the overlap of intramolecular vectors from 
adjacent origins. Tollin & Rossmann [Acta Cryst. 
(1966), 21, 872-876] have proposed a criterion for the 
choice of the cell; this criterion is in fact sufficient but 
not necessary: after a discussion on the shape and the 
size of U, it is shown in this paper that the volume of 
the cell can be generally halved for the very same 
resulting map and, as a consequence, the computing 
time is also halved. Moreover, the size of the cell, even 
over-reduced, has a relatively weak influence on the 
ultimate conclusion of the MR calculation. 

1. Introduction 

Once the structure of one member of a family of related 
molecules has been solved by conventional methods, 
the structures of other members can be determined 
more readily. The molecular-replacement (MR) method 
may be used to determine what orientation and position 
of a closely related molecular model fits best the X-ray 
diffraction intensities from the crystal of an unknown 
structure. When an appropriate model exists, and the 
MR is successful, the great deal of labour required for 
the multiple-isomorphous-replacement (MIR) method 
can be considerably reduced. Moreover, MR can help 
solve structures by the MIR method as MR electron 
density maps can be used to determine heavy-atom- 
derivative positions directly (Buehner, Lifchitz, Bally & 
Mornon, 1982). 

Rossmann & Blow (1962) (hereafter RB) have 
formulated the general concepts of MR, although 
earlier authors had already tried to use similarities 
between structures and/or a priori knowledge on 
unknown structures to solve these structures in some 
particular cases: Taylor (1954), Vand & Pepinsky 
(1956), Buerger (1959). Their work has shown that 
superimposing the Patterson function of a known 
model molecule on the observed Patterson function of 
an unknown crystal structure allows the determination 
of the six independent parameters corresponding to the 
degrees of freedom in the general case when there is 
only one rigid molecule in the asymmetric unit and 
non-crystallographic symmetry is absent. 

This six-dimensional problem splits into two three- 
dimensional subproblems, i.e. to find (i) the orientation 
of the known molecule in the observed crystal, and (ii) 
the position of the model relative to the symmetry 
elements or origin of the cell. 

As RB have shown, the determination of the 
orientation can be performed first, independently of the 

translation, because the major part of the orientational 
information on the units of the observed crystal 'lies in 
a volume extending from the origin by the overall 
dimensions of the units'. 

RB have introduced the rotation function R(0) to 
find the 'best' agreement between model and observed 
structure versus the orientation 0. This is the method 
most used to find 0. 

This correlation-like function is defined in direct 
space as: 

R ( 0 ) =  f Pe[C(O)X, IPo(X,)dV , (1) 
u 

where Po is the Patterson function of the observed 
crystal, Pc is the calculated Patterson function of the 
model, C(O) is a rotation matrix defining the relative 
orientation between crystal molecules and the pro- 
posed, model, and U is an integration volume equal to 
or smaller than the crystal cell. 

The mathematical properties of the Fourier trans- 
form allow R(O) to be expressed in reciprocal space: 

R(O) = ~ • IFe(h')lZlFo(h)l z Ghh,(O), (2) 
h h' 

where I Fol is the observed structure factor from the 
crystal, I Fcl is the calculated structure factor from the 
proposed model, h,h' are vectors in reciprocal space of, 
respectively, the observed crystal and the hypothetical 
model 'crystal', and Ghh,(0) is an interference function 
depending only on the volume U and 0. 

The numerical evaluation of R(8), in the present 
case, can be reduced when performed in reciprocal 
space, particularly by using Crowther's (1972)fast  
rotation algorithm based on a spherical-harmonics 
development and FFT. 

The aim of this paper is to discuss, on the one hand, 
the choice of U and, on the other, the choice of the 
lattice h' (or the hypothetical unit cell containing the 
model for the calculated Patterson function, which is 
equivalent in direct space), and to derive simple 
practical rules for optimizing the computing effort in 
the use of R(0). 

2. The Integration volume U 

For an effective and practical use of the rotation 
function R (0), the choice of the rotated model is by far 
the most important. However, other parameters such as 
the integration volume and the arbitrary unit cell 
containing the model have to be carefully selected in 
order to obtain the best results together with a 
computing time which is as short as possible. What 
rules govern the choice of these last two parameters? 

In their paper on programs for evaluating R(0), 
Tollin & Rossmann (1966) (hereafter TR) have 
established rules of thumb: 
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(1) 'The integration is performed over the volume U 
equal to the volume around the origin of the Patterson 
function within which Po and Pc are expected to show 
similarity. U is invariably chosen to be a sphere of 
radius r0'; in fact, these authors have described 
algorithms which approximate this sphere by a 
centrosymmetric volume: this maintains the exact 
rotation symmetry of R(O) in Eulerian space (Tollin, 
Main & Rossmann, 1966), needed for easier inter- 
pretation of the maps. 

(2) 'It is helpful to place the known rigid group in an 
arbitrary unit cell of sufficient size to avoid overlap of 
the self-Patterson vectors, that is leaving gaps between 
the groups equal to the diameter of the group'. 

These rules ensure a correct evaluation of R(O) 
provided that the radius r 0 has been defined appro- 
priately; following RB quoted above, the useful portion 
of the Patterson function has approximately the overall 
dimension of the model, which therefore gives r 0. 

In fact, the choice of this radius is a compromise. 
Joynson, North, Sarma, Dickerson & Steinrauf (1970) 
gave a good discussion of the dilemma and concluded 
by recommending, from their experience, that U be a 
sphere of radius equal to half the diameter of the model: 
it is, by far, the most often used choice in the literature 
and leads, in general, to good results. 

In the current situation where P0 is the classical 
Patterson structure of the observed crystal, containing 
only one molecule in the asymmetric unit, some 
theoretical arguments can be given to support the rule 
of thumb of Joynson et al. The overall dimension of the 
Patterson function of the isolated molecule is twice that 
of the molecule itself. Therefore, the corresponding 
volume of the Patterson function is 23 -- 8 times the 
volume of the molecule. On the other hand, in the 
crystal the molecules are arranged with a packing 
which is more or less compact: the asymmetric unit and 
the molecule have a volume of the same order. 

Let us suppose, now, that the unit cell of the crystal, 
which is of course identical to that of the Patterson 
structure of this crystal, is built up from K molecules in 
the general equivalent positions of the space group: if 
the space group is not centrosymmetric (which is 
necessarily the case for protein crystals), there are 
2K asymmetric units in the unit cell of the Patterson 
structure. As pointed out by Huber (1970), the 
Patterson structure contains K 2 Patterson functions of 
the isolated molecule from which only K, however, are 
independent, K . ( K  - l) being related by the sym- 
metry of Patterson space. 

Thus some intrinsic overlaps occur systematically in 
a Patterson structure. From the K independent Patter- 
son functions, onl~¢ one is a self-Patterson function, 
translation independent and centred at the origin. 
Therefore, the central part of the Patterson structure, 
the only relevant part for the rotation-function cal- 
culation, is constituted by the superposition, at the 

origin, of K symmetry-related copies of this self- 
Patterson function. This rotational part of the Patter- 
son structure is 'blurred' by overlap of the translational 
part formed of the K ( K  - l) cross-Patterson functions. 
The distances from the origin of these cross-Patterson 
functions and the overall dimensions of the molecule 
are of the same order. 

The size of U may now be chosen in order to balance 
two criteria: U must contain (i) a maximum of 
orientational vectors, and (ii) a minimum of transla- 
tional vectors. To define the volume U by the set of 
points where the local contribution of the two types of 
vectors are equal, amounts approximately to applying 
the rule of Joynson et al. 

This suggests that for U the smallest polyhedral 
volume [similar to the Wigner-Seitz cell used in 
solid-state physics (Kittel, 1968)] defined by the 
median planes perpendicular to the vectors (r k - rk,) 
should be used, where r k are the centres of molecules in 
the cell: although individual vectors r k are not yet 
known, in general, before the ultimate conclusion of the 
MR, ( r  k - -  rk, ) can be taken, with sufficient accuracy, as 
the vectors formed from the origin to the major peaks 
in the Patterson map. Moreover, such a polyhedral 
volume maintains, by construction, the exact sym- 
metry of R (0)in Eulerian space. 

Selection of U following Joynson et al., or with a 
similar rule, leads to a rejection of about ~ (!) of the 
volume considered in the detection of the molecular 
orientation: saving a reduction of the computation in 
the same proportion, one can question the actual 
meaning of a result found in these conditions. In fact, 
the rejected proportion of 'orientational' vectors is far 
less. Relation (A 19) of the Appendix, between the mean 
values of R(8) according to the choice of U 

R' = 0.91R, (3) 

indicates that only less than 10% of useful vectors are 
omitted in the computation, to limit to less than 10% 
the disturbance of R (0) by extraneous vectors. 

Lattman & Love (1970) pointed out that Pc in (1) is 
the Patterson function of an isolated molecule, so the 
integration volume U is no longer necessary, the model 
itself being of finite extent. Strictly speaking this is true 
and may speed up the numerical evaluation of R(O). 
Unforturiately, this neglect of U is equivalent to 
choosing implicitly U identical to a sphere of radius 
equal to the diameter (and not to the radius...) of the 
model, which is a poor compromise and, moreover, 
requires the selection of an oversized cell for the model. 
A reduced sphere U is needed to improve the contrast 
of significant peaks in R(O). 

The preceding discussion needs to be generalized for 
the case of ellipsoidal-shaped molecules: 

r 0 = geometrical mean of the ellipsoid semi-axes (4) 
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can be a good choice, for it minimizes the contribution 
of the least significant long vectors. This type of 
compromise was apparently used by Colman, 
Deisenhofer, Huber & Palm (1976) with the M603 Fab 
fragment of dimensions 80 x 40 x 40/k, and where r 0 
= 30/k was chosen. In fact, an actual integration 
radius of 2r 0 has been used because U could be chosert, 
in this particular MR application, as having approxi- 
mately overall dimensions of Po: contrary to the 
classical situation, this observed Patterson function was 
computed from a selected domain of the isomorphous 
electron density and so overlap by adjacent Patterson 
functions could be totally eliminated. 

The origin peak of the Patterson function contains 
very little information on orientation. Its radius and the 
data resolution are of the same order. It could be 
usefully removed when overlaps occur at adjacent 
origins (Lattman & Love, 1970). But, in the present 
case, this operation is unnecessary since the model cell 
can be chosen of sufficient size. The origin contributes 
to R(O) only by adding a quasi-constant term, which 
does not affect the positions or shapes of the peaks. 

Limiting the integral (1) on the volume U is 
equivalent to multiplying the integrand by a weighting 
function equal to 1 inside U and equal to 0 outside. A 
more general weighting function could be a decreasing 
function of the distance from the origin: intermolecular 
and intramolecular vectors are inextricably inter- 
mingled, but most of the vectors near the Patterson 
origin are intramolecular and the proportion decreases 
as the distance increases from the origin. A Gaussian 
function leads to what has been called the 'shaded 
rotation function' (Sasada, 1964; Prothero & Ross- 
mann, 1964). Craven (1975) has also proposed such a 
weighting scheme, but acting directly on the model, to 
compensate for possible errors in the atomic positions. 

3. Symmetry, shape and size of the model cell 

Two symmetries and corresponding shapes seem a 
priori interesting for the model cell: (i) the symmetry of 
the observed crystal with its corresponding shape and 
(ii) P 1 symmetry with a well sized arbitrary cell. 

The former seems theoret{cally attractive for several 
reasons: first its 'physical' nature and secondly the 
possibility for calculating the transform of the model by 
a classical structure factor calculation program, using 
the h,k,l sequence of the observed crystal as input data. 
The symmetry produces extraneous overlaps on intra- 
molecular vectors, in comparison with a self-Patterson 
function of an isolated molecule. Nevertheless, in this 
case, Pc and Po belong to the same Laue class. It can be 
expected that the same symmetry for both functions 
may produce comparable features, particularly in the 
region surrounding the origin. Such similarities may 
allow easier interpretation of the rotational correlation 
(i.e. the rotation-function calculation). Nevertheless, in 

practice, this symmetry is rarely used, for the position 
of the model has to be chosen to avoid overlaps by 
crystal packing. This complication does not exist with 
P1. 

In fact, the higher the symmetry of the model crystal, 
the smaller is the rotational asymmetric unit and so is 
the computing time, but the greater also might be the 
number of spurious overlaps between self-Patterson 
functions and between peaks in R(0) too. These 
overlaps, in distorting significant peaks, produce loss of 
accuracy as well as false peaks and lead to cumber- 
some or impossible interpretation of the map. 

So, the lowest symmetry P1 is normally chosen for 
the model unit cell, the Patterson function of symmetry 
P i  leading to a minimum of peak overlaps and maps 
which are easier to unravel. But what criterion 
determines the shape and size of this unit cell? 

Some authors, using MR to solve their structures, 
have given no details about the choice of the hypo- 
thetical cell, but many have followed the Joynson et al. 
equivalent 'reformulation' of rule (2) above: 'The 
hypothetical unit cell has dimensions that are at least 
twice as great as the dimensions of a single molecule in 
each direction' [see specially Hackert, Ford & Ross- 
mann (1973) and Nixon & North (1976)]. With this 
criterion the volume of the cell would be at least 23 = 8 
times the volume of the model. 

Other authors have used even larger cells: three 
times, in each direction, and even more, the overall 
dimensions of the model (Bott & Sarma, 1976; 
Schmidt, Girling, Houston, Sproul, Amma & Huisman, 
1977), that is to say a cell volume at least 33 = 27 times 
the volume of the model. The number of structure 
factors to be evaluated is proportional to this volume. 
Although the correct result was obtained for the R(8) 
maps, such unnecessarily large cells lead to an increase 
in computing time without any improvement in the 
map. 

In every case an orthogonal cell a = p = ), = 90 ° 
was selected, to simplify the structure factor 
calculation. 

4. Reduction of the model hypothetical cell 

Craven (1975) has stated the problem clearly: 'The 
axial dimensions should be large enough that no 
intermolecular vectors occur within the sphere of 
comparison to be used in the rotation function', and, 
moreover, has given a practical rule: 'Thus, only 
intra-fragment vectors should occur within a certain 
distance r 0 of the origin of the model Patterson 
function. If the model fragment is imagined to be 
enclosed by an envelope r 0 distant from all atomic 
centers, then the unit cell should be large enough to 
contain this envelope'. In fact, this criterion is as good 
as or better than the TR rule, according to the U 
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chosen, but is again only sufficient, i.e. the cell can be 
smaller with no more overlap of intramolecular vectors. 

We have already pointed out this situation and have 
experimented with another criterion to select a reduced 
cell (Lifchitz, Harada, Morris, Laurent & Berthou, 
1977). A practical rule, necessary and sufficient, can 
easily be derived for an optimized choice of the model 
cell. 

4.1. One-dimensional model  

It will be convenient, if trivial, to consider first a 
one-dimensional model for this derivation. A model of 
size 2B, and therefore of 'radius' B is placed in a 'cell' 
of size A (Fig. la). 4B = 2(2B) is the size of the 
Patterson function of the model with the same period A 
as the model cell (Fig. lb). Fig. l(c) represents the limit 
situation which totally prevents overlap from adjacent 
Patterson functions and corresponds to the TR rule: 

A > 4B (5) 

The keyword is 'totally' and was, with no doubt, 
implied in the TR rule; it is unnecessarily restrictive and 
may be contrasted with Craven's rule which permits 
overlap outside the sphere of interest, U. 

Let C be the 'radius' of U. A necessary and sufficient 
condition, to avoid overlap in the volume U, depending 
upon the period A, is clearly (Fig. ld): 

A ___ C + 2B, (6) 

which agrees with Craven's practical rule only i f ro/2  is 
substituted for r 0. 

The more usual situations need now to be examined. 
The inequality (6) becomes identical to (5) when C = 
2B; that is to say, the diameter of U is equal to the size 

0 A 2A x - 2 B  0 2B 4B 6B 8B 10B x 

(a) (c) 

A - 2 B  2 ( A - B )  2B+C 2B+2C 4B+C 

(b) (d) 
Fig. 1 (a) Isolated one-dimensional model 2B sized in a unit cell of 

period A. (b) Patterson function, of the preceding model, 4B 
wide. (c) Smaller period A = 4B which totally prevents overlap 
from adjacent Patterson functions. (d) Necessary and sufficient 
condition, to avoid overlap in the volume U: A = C + 2B. 

of the Patterson function of the model, which corre- 
sponds, for example, to the Lattman & Love rotation 
program. In the most important case, in practice, where 
U is the limiting volume of the model, i.e. C = B, (6) 
becomes 

A > 3 B ,  (7) 

which can be expressed as: In the use of rotation 
functions, with an integration volume equal to the 
limiting volume of the rotated model, the optimal model 
unit cell has dimensions that are one and a half times 
the dimensions of this limiting volume in each direction. 
This choice avoids both vector overlap and waste of 
computing time. 

The volume of the unit cell is now (½)3 = 3.375 times 
the volume of the model instead of 8 in the TR rule. 

For a given symmetry, and range of resolution, the 
number of structure factors of a crystal is directly 
proportional to the unit-cell volume as is, at least, the 
computing time for structure factor calculation. On 
the other hand, for a given resolution and volume U, 
the computing effort varies approximately as the 
number of structure factors with both types of 
algorithm used for the calculation of R (0): 

- the proportionality is obvious in a direct evaluation 
of (2), whatever the algorithm used. 

- Crowther's fast rotation algorithm comprises two 
stages: first the expansion of IFI 2 in spherical- 
harmonics terms, which takes the major part of the 
computing time, and is roughly proportional to the 
number of IFI 2 and, secondly, a convolution by FFT, 
with a short and quasi-constant computing time. 

Thus, whatever algorithm is used to evaluate R(O), 
the computing time varies as the model unit-cell 
volume. 

The R(O) computing time can therefore be reduced, 
following (7), 23/(3) 3 = 2.37 times, in comparison with 
the TR rule, for the same map. 

The effect of limited resolution needs also to be 
discussed. 

The 'electron density' (Fig. la) corresponds to an 
unlimited resolution. In the more realistic case of 
limited resolution D, this ideal electron density is 
widened by convolution with the sine( ) function 

sin ( 2zcx/D)/ ( 2ztx/D), 

leading to the density shown in Fig. 2. Strictly speaking 
the size of the model becomes infinite, but it is 
commonly, and more practically, chosen as the width 
at half the height 

2B --, 2B + D / 2  (8) 

and the inequality (6) becomes 

A > C + 2B + D/2 .  (6') 

In actual situations, the resolution D varies as the 
radius B of the model, as does the radius C of U; the 
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period A can be corrected by a roughly constant 
multiplicative factor: thus, following (6'), in the case 
for example of lysozyme, which fits within a 20 A 
radius sphere, the side of the hypothetical unit cell, at 
6/k resolution, is 63/k long and following (7) only 
60 A. In practice, the difference (5%) can be generally 

neglected, and (7) seems to lead to satisfactory 
structure resolution by MR (Harada, Lifchitz, Berthou 
& Jolles, 1981). 

4.2. Two-dimensional model 

'Orientation'  and 'shape' have very restricted mean- 
ing for the above one-dimensional (1D) model. The 
restriction disappears with a two-dimensional (2D) 
model which can be conveniently used to discuss the 
role played by these factors. 

The area S of the lozenge (Fig. 3) circumscribing the 
limiting circle of the 2D model is 

S = 4B2/sin a. 

The minimum of this area corresponds to a square (a = 
90 °) and justifies the choice of orthogonal P1 hypo- 
thetical cells. This can be extended to an ellipsoidal 
model, where the smaller limiting rectangular cell has 
the dimensions and the orientation of the ellipse axes. 
Although, in practice, no special attention seems to 
have been given to the initial orientation of the model 
(which is clearly arbitrary...), one can see, following 
elementary geometrical considerations, that the selec- 
tion of an adequate relative orientation between the 
model and its unit cell, will again save computing time. 

E 

~.] 2A 'x  

Fig. 2. Widening effect of the limited resolution D, on the 
one-dimensional electron density. 

i s 

2B 

Fig. 3. The circumscribing square is the cell • with the smaller 
area S. 

Application of (6) or (7) is performed by selecting an 
adequate magnified homothetic cell of the reduced 
limiting cell containing the model. 

4.3. Undersized cells 

When (6), (7) or (6') are not satisfied, the resulting 
undersized unit cells lead to Patterson function overlaps 
from adjacent origins. The corresponding perturbation 
of the Patterson function can be evaluated from the two 
following points: 

- Let x be the relative distance between two identical 
domains of size L and of volume V ~ L N in 
N-dimensional space. The size of the domain overlap 
(when it occurs.. .) is (1 - x )L  and it has a volume A V  
~, (1 -- x)NL N. The relative volume overlap of these two 
domains is 

AV/V, ,~  ( 1 -  x)  N. (9) 

The relative disturbing effect varies directly as A V / V ,  
which is plotted Fig. 4 for N = 1, 2, 3. 

For weak overlaps (1 > x >> ½), A V / V  decreases 
drastically as N increases, and takes very small values: 
e.g. at 3D (N = 3) for an overlap of 10% A V / V  = 10 -3. 

- The Patterson function of an individual molecule is 
a self-correlation function, and its mean local value falls 
off in a similar way to the preceding law (9) with x 
representing the relative distance from the origin: 
consequently, values of a 3D Patterson function are 
very small in its peripheral region (in vector formalism, 
it can be said: there are few long vectors in a molecule). 
As quoted by Lattman (1982), the effects of placing 
this function in a lattice with spacings somewhat 
smaller than the diameter of the Patterson function are 
slight. In this sense one can undersample the transform 
IFcl 2 of the Patterson function, compared with the 
criteria of the sampling theorem (Whittaker, 1915; 
Shannon, 1949). 

As it is derived in the Appendix, from the expression 
of the perturbation by overlap of the Patterson 
function, the mean relative disturbing effect, on the 
local value of R (0), is roughly 

A R / R  ,~ 504(1 -- x) 9 (10) 

d V  
7 

0- 

0 .25  

0 .125  

0 

. . . . . . . . . . . . .  i 
2D i 

0 .5  1 x 

Fig. 4. Plots, for the physical dimensionality values, of the relative 
volume overlap of two objects versus the relative distance. 



136 MODEL CELL FOR THE ROTATION FUNCTION 

when the integration volume U is the Patterson function 
itself, and 

AR'/R' ~ 69(]- -  x ) 6 ( ] -  x) 3 (11) 

when U is the model envelope, x is the relative distance 
between two adjacent Patterson functions (½ < x < 1 
for the first case and ½ < x < ~] for the second). 

This shows, in particular, that (6) can be substituted 
for (6') with an unimportant loss of accuracy. For 
example, with a linear overlap of 10% expressions (10) 
and (11) give, respectively, AR/R = 5 × 10 -7 and 
AR' /R '= 14 x 10 -7. 

Thus, it can be predicted that R(O) functions will 
have very good robustness against over-reduced model 
cells and limited resolution. 

A practical experiment has been performed to test 
this convenient property of R(O) in its application to 
MR. F c of an isolated model of the tetragonal form of 
hen egg white lysozyme (Blake, Mair, North, Phillips & 
Sarma, 1967) has been used against 380 independent 
F o values, in the range 6-25 A, of the orthorhombic 
high-temperature form (Jolles & Berthou, 1972). 
Presence of mother liquor in a real crystal alters the 
intensities of low-angle reflections to a very large extent 
(Joynson et al., 1970; Lattman & Love, 1970). As 
recommended by RB such low-order reflections are 
omitted in the rotation-function calculation, reducing 
extraneous peaks in the map and giving a simple means 
of 'sharpening' due to the contrast enhancement 
(Prothero & Rossmann, 1964). 

The radius of the limiting sphere of a lysozyme 
molecule is roughly 20 A, and this was chosen as the 
radius of the integration sphere U. Three different 
orthogonal model unit cells, all having cubic shape and 
P1 symmetry, have been considered: an oversized cell 
following TR rule (5), a reduced cell following (7) and a 
heavily undersized cell. The observed crystal has 
P21212~ symmetry giving a P2~ab rotational Eulerian 
symmetry to R(O) (Rao, Jib & Hartsuck, 1980). The 
whole asymmetric unit of R(O) was computed by 
Crowther's fast rotation program. Results are listed in 
Table 1, with the corresponding rotation maps in Fig. 
5. 

Qualitatively and quantitatively the three maps have 
great similarities. The highest peak of R(O) was in the 

same section 02 ~ 67 o in every case. Cells of sides 80 
and 60 A lead clearly, in practice, to a very similar 
result. 

The 40/i, cell corresponds to a period A equal to the 
model size 2B (Fig. la) and, therefore, a total overlap 
of adjacent Patterson functions (Fig. lb). This leads to 
a drop in the peak-to-background ratio from 4.3 to 3.9 
standard-deviation units, which indicates a slightly 
disturbed map with a corresponding loss of quality. 

In spite of this, the 80 A/60 A and 40 A maps have 
very similar features with just a slightly rotated main 
peak. A rewritten expression from Lattman (1972), 
given in another context, permits the easy evaluation of 
this small Eulerian rotation: 

AO2= AO~ + AO~ + AO] + 2A01AO3 cos 02. (12) 

Consultation of Table 1 gives A01 = --5 °, A02 = 0 °, 
A83 = 2.5 °. The small resulting rotation AO = 4.6 ° is 
(only) of the same order as the sampling increments (5, 
5, 2.5) ° used for the computation of the rotation maps. 
One can also compare O 0 with the orientation (237, 66, 
30) ° (Berthou, Lifchitz, Artymiuk & Jolles, 1982) of 
the molecule at the conclusion of the rigid-body 
refinement, at the same resolution, which corresponds 
to a rotation AO = 6.8 o from the orientation found in 
80 A/60 /k  maps and 7.5 o for the 40 A map: in this 
case, the slightly disturbed map also permits a 
satisfactory refinement .... 

To conclude, it can be said that significant econ- 
omies can be made in the calculation of the rotation 
function between a model molecule and an unknown 
structure, by a careful choice of the integration volume 
and of the unit cell in which the model is placed, for 
calculation of a Patterson function which will be 
compared with the Patterson function of the unknown 
structure. 

The use of the rotation function, to find the 
orientation of the molecule, leads to three consecutive 
and related choices: (i) the model, (ii) the integration 
volume U and (iii) the hypothetical model unit cell. The 
choice of a suitable rotated model is, of course, by far 
the most important. 

Some simple theoretical arguments have been given 
which justify the currently used rule of thumb selecting 
for U the sphere circumscribing the model itself. 

Table 1. Comparison of the rotation functions for three decreasing model hypothetical cells 

Observed crystal cell: P2t212 t, a = 56.4, b = 73.8, c = 30.4/k, a = fl = ), = 90 °. 
Model hypothetical cell: P1, a = b = c, ct = fl = ~ = 90 °. 
Maximum value of R(0): Rmax; minimum value of R(O): Rm| n. 

Standard Peak/background 
Mean value m deviation a in a units Highest peak 

Model ceil (%) (Rma x --  Rmln) (%) (Rma x - -  Rmln) (100 -- m)/o 00 = (0 t, 02, 03) ° 
a = 80 A 37.6 14.5 4.30 240, 67, 35 
a = 60 37.8 14.5 4.29 240, 67, 35 
a = 40 39.9 15.5 3.88 235, 67, 37.5 
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However, in comparison with U chosen as the limiting 
volume of the Patterson function of the isolated model, 

of the volume around the origin of the observed 
Patterson function, relevant in the detection of the 
molecular orientation, is rejected. But consideration of 
the general law of variation of the mean value of the 
Patterson function leads to the conclusion that only less 
than 10% of orientational vectors are omitted in the 
computation whilst the disturbance of R(O) by extra- 
neous vectors can be limited to less than 10%. 

The volume of the arbitrary model unit cell should be 
chosen to be as small as possible, following the rule 
(6)/(7), since the computation effort is proportionately 
reduced. This rule deduced from elementary geometri- 
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Fig. 5. Contours of sections through the main feature of the 

rotation function R (0) at 6 A: the same sections (02 = 67 o) of the 
Eulerian cell asymmetric unit, corresponding to the highest peak, 
is given for three different hypothetical model unit cells. These 
cells are cubes of side a, PI symmetry, containing one lysozyme 
molecule. (a) a = 80 A (oversized cell), (b) a = 60 A (reduced 
cell), (c) a = 40 A (undersized cell). Seven equidistant contours 
between the mean and maximum values are shown, x is the best 
orientation, and + indicates the next highest peak. Map (a) and 
(b) are very similar and (c) is only slightly different from the 
other two. 

cal considerations upon overlaps of Patterson functions 
at least halved the whole calculation of the rotation 
function when the classical criterion is used, for the 
very same map R(8). Moreover, some theoretical 
arguments and experiments have shown that the 
computation can even be reduced (up to eight times) 
with, in general, only weak perturbation of the rotation 
map. 

I thank Drs J. Berthou and A. Soulard who read the 
manuscript. Thanks are also given to Dr R. A. Crother 
for kindly supplying a copy of his fast rotation 
program. The author is indebted to Dr B. T. M. Willis 
and the two referees for their comments which have 
improved the final version of this paper. 

APPENDIX 

Let R be an approximate value of the rotation function 
R(O) - its local mean value. R can vary when adjacent 
Patterson functions of an individual molecule overlap. 
The relative variation A R / R  versus the relative distance 
x is studied in the case where some simplifying 
hypotheses are valid: 

(i) the relative linear overlap is low; 
(ii) we consider only mean local values; 
(iii) the molecule has a quasi-spherical shape 

(therefore the Patterson function also); 
(iv) the two Patterson functions correlated to 

produce R(O) have a quite similar law of variation 
within the integration volume U. 

As quoted in the paper, the law of mean local value 
fall-off, of the Patterson function P(r) of an individual 
molecule in N-dimensional space, is a consequence of 
the relation (9) 

P(r) "~ ( 1 - r) u, (A 1) 

where r, the relative distance from the origin, varies in 
the range [0,1 ]. 

We will consider successively two possible inte- 
gration spheres U for the computation of R(8) as 
defined by (1): (a) the whole limiting volume of P e, and 
(b) the limiting volume of the molecule used to evaluate 
Pc"  

A 1. U -- limiting sphere o f  the Patterson function 

Fig. 6(a) schematizes an overlap situation ('aliasing') 
by undersampling IFcl 2, The relative resulting linear 
overlap is clearly: 

(1 - x ) .  (A2) 

It is a 'simple' overlap, as in the case of the following 
derivation, until: 

x _> ½. (a3) 
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Otherwise a 'double' overlap occurs, because of the 
periodical nature of the Patterson function. 

From consideration of the relation (A 1) and Fig. 6 
(a), the mean local disturbance of the Patterson 
function, by overlap of the adjacent Patterson function, 
evaluated at the centre of this overlap region, is given 
by 

APc(x)=(1-x)  N. (A4) 

The volume of an N-sphere of radius r is 

V(r) = AN rN (A5) 

and thus the surface area of this N-sphere 

S(r) = aNNr u-~, (A6) 

where A N is a constant. 
If the overlap region may be considered spherically 

shaped, its volume is 

AN(1 -- X) N (A7) 

from (A 2), as the relative scale between r and x is 2. 
To find the total volume of overlap, the number of 

contacts with the nearest neighbours must be taken into 
account: 

AV = 2NAN(1 - x) N. (A8) 

On the other hand, R(O) is the integral of the 
product of two Patterson functions within the in- 
tegration volume U: 

R = y p2(r)S(r)dr. (A9) 
U 

Using the relation (A 1) and (A6) 
1 

R = A N N  f rN--l(1--r)2Ndr, (A10) 
0 
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Fig. 6. Evaluation of the disturbing overlap from adjacent 
Patterson functions in a lattice, depending on the relative spacing 
x. (a) The integration volume U is the limiting volume of the 
Patterson function (size of U - 1). (b) U is the limiting volume of 
the model (size of U = ~). 

which involves a classical integral (e.g. Dwight, 1961) 
and finally 

R =AN/C~N, ( a l l )  

where C~N stands for the number of combinations of N 
objects among 3N. 

The disturbance of the rotation function is easily 
evaluated, if the disturbance of the calculated Patterson 
function is taken as constant within the small volume 
A V  

AR = Po(X).ZV.APc(x), (A 12) 

and, substituting (A 1), (A4) and (A8): 

AR = 2NAN(1 - x) 3N. (A13) 

This gives for the relative disturbance of the rotation 
function: 

AR/R = 2NC~N (1 - x) aN. (A 14) 

A2. U--  limiting sphere o f  the model 

As can be seen (Fig. 6b), the relative linear overlap, 
within the integration volume U, has now an expression 
different to (A 2): 

( t - -  x). (A 15) 

with x in the range [½,tl. 
The homologous expressions of (A4), (A8) and 

(A 10) are: 

AP" = (t - x) N (A 16) 

AV'  = 2NAN( i -  x) N (A17) 

1 / 2  

R ' = A N N  f rv-~(1--r)2Ndr. (A18) 
0 

R' can be expressed as a function of R: 

) R' = 1-- ~ C~N/23N R. (A19) 
p = 0  

Fig. 6(b) shows that in comparison with the 
preceding case, some dissymmetry now exists between 
the values of Po and Pc at the centre of the overlap 
region, leading for the disturbance of R'  to 

AR' = Po(X-~t)AV'  AP' (x)  (A20) 

and by substitution 

AR' = 2NAN( t - x)2N(~ - X) s, (A21) 

giving for the relative disturbances of the rotation 
function: 

AR' /R '  = 2NC~N(]-- x)2N(~-- x)N 
N - - I  

1-- Z C~N/23N (A22) 
p = 0  
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Abstrac t  

The conditions appropriate for direct structure imaging 
of silicon carbide polytypes in the high-resolution 
electron microscope have been investigated. Weak- 
phase-object calculations confirm that a resolution of 
better than 2.5 A is necessary before polytypic stacking 
sequences can be identified directly. Furthermore, 
resolutions closely approaching 1 A are required to 
resolve projected pairs of S i -C atoms, and considerably 
better than 1 A is necessary to differentiate between the 
two species. Extensive multi-slice calculations, based on 
both current and projected electron-optical charac- 
teristics, show that polytype stacking should be 
recognizable at 500 kV up to thicknesses of 45-75 A, 
but not at 100 kV, except possibly at the 'reversed' 

0567-7394/83/010139-10501.50 

Scherzer defocus position with extremely coherent 
illumination. The occurrence of Fourier images com- 
plicates recognition of the correct objective-lens defocus 
particularly for thin crystals of the 3C polytype. In 
thicker-crystal regions (>100 A), where linear image 
contributions are small, mutual interference between 
diffracted beams results generally in polytype images of 
apparently improved resolution and, at specific 
thickness and defoeus values, leads to images of 3C 
resembling the 'atom-pair '  configuration. The latter are 
then explained by consideration of the image amplitude 
and intensity spectra. Finally, the problems of recover- 
ing specimen structure from crystals of intermediate 
thickness, as well as some of the factors affecting any 
quantitative experimental studies, are briefly dis- 
cussed. 
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